Wie man erfolgreich handeln Die Haggerty 1,2,3 Strategie Stellen Sie sich vor, dass Kevin Haggerty, ehemaliger Leiter des Handels für Fidelity Capital Markets, neben Ihnen sitzt, wie Sie handeln. Und während hes sitzt neben Ihnen, trainiert Kevin Sie und bohrt Sie unerbittlich, wie man seine 1,2,3-Strategie anwenden. Das eine Muster, das er beobachtet hat, um konsequent zu finden, Tops und Böden in allen Zeitrahmen. Intraday, täglich, wöchentlich und sogar monatlich Klicken Sie hier für weitere Informationen. Wie erfolgreich die Haggerty Slim Jim Strategie für explosive Gewinne Heres Ihre Chance, Kevin Haggertys Lieblings-Trading-Strategie zu lernen. Schlanke Jims. Kevin wird Ihnen beibringen, wie zu finden, explosive bewegt intraday, täglich und wöchentlich. Kevin Haggertys Wie Handeln Major First-Hour Umkehrungen für schnelle Gewinne Viele professionelle Händler konsequent Geld verdienen während der ersten Stunde des Handels. Und so können Sie jetzt können Sie trainiert werden von Kevin Haggerty, wie er lehrt und trainiert Sie, wie man seine explosive First-Hour-Reversal Strategien handeln Kevin Haggertys Sequence Trading Kurs NEUE KEVIN HAGGERTY-Kurs Kombinieren Sie alle Kevins Top-Strategien in einem und das ist Sequence Trading. Macht Ihre Lieblings-Strategie noch leistungsfähiger Die ultimative Bow Ties Strategie Lernen Sie Dave Landrys neueste und modernste Version seiner sehr beliebten Bow Ties Strategie. Seine eine Strategie, die Sie verwenden können, um E-Minis, Forex, Aktien und ETFs Handel. Trading High-Momentum Aktien mit Landry Persistent Pullbacks Hier ist Dave Landrys beste Methode für Daytraders und Swing Trader. Anhaltende Pullbacks. Zwar gibt es viele Pullback-Strategien, die veröffentlicht worden sind, aber nur eines zeichnet sich als die besten. Handeln der Kaltbaum-Sieben-Schritt-Methodik Lernen Sie Gary Kaltbaums vollständige Methodik für die Auswahl von explosiven Beständen sowohl auf der langen Seite als auch auf der kurzen Seite des Marktes. Professionelle Strategien für den DAX-Markt Mark Oryhon ist einer der größten DAX-Händler weltweit. Heres Ihre Chance, von ihm zu lernen. John Carters 5-Minuten-Methode für den Handel der Mini-Dow Diese Intraday-Strategie ist einer der Gründe, wie ich den Mini-Dow handeln. Lassen Sie mich es Ihnen beibringen. The Sweet Spot für Mean Reversion ETF-Strategien von Michael R. Bryant In seinem letzten Buch, Howard Bandy diskutiert, was er nennt die quotsweet spotquot für die Entwicklung von mittleren Reversion Handelssysteme. 1 Die Idee ist, dass die richtige Kombination aus Barlänge, Haltedauer, Systemgenauigkeit und anderen Variablen dazu tendiert, risikoadjustierte Renditen zu maximieren. 2 Dieser Artikel zeigt, wie Mittel Reverse Trading-Strategien, die in diesem Sweet Spot liegen, können für Exchange Traded Funds (ETFs) mit automatisierten Tools entwickelt werden. Verwenden von Adaptrade Builder. Ein Strategieentwicklungswerkzeug für Windows, Ill zeigen, wie Stresstests mit der Monte Carlo-Analyse als Teil des Entwicklungsprozesses genutzt werden können, um robuste Mittelwert-Reversionsstrategien für die SampP 500 (SPY) ETF und die Select Sector SPDR ETFs zu finden. Projektdateien für den Builder, die den Strategiecode enthalten, werden für jedes Beispiel bereitgestellt. Landing in der Sweet Spot Die Grundidee hinter Dr. Bandys Sweet Spot ist, dass gute Trading-Strategien sollten eine kurze Bar Größe und haben eine ziemlich hohe Genauigkeit mit einer kurzen Haltedauer und niedrigen Drawdown. Die kurze Balkengröße und die kurze Halteperiode maximieren die Chancen für zusammengesetzte Renditen, während die hohe Genauigkeit und der niedrige Drawdown die Erholung von Verlusten erleichtern. Die letztgenannten Qualitäten machen es auch leichter, die Durchführbarkeit der Strategie zu bestimmen und zu bestimmen, wann ihre nicht mehr funktionieren, da typische Losing Streaks für hochgenaue Systeme in der Regel relativ kurz sind. Basierend auf den Richtlinien von Dr. Bandys werden in diesem Artikel die folgenden Merkmale verwendet, um die optimalen Voraussetzungen für mittlere Reversions-ETF-Strategien zu definieren: Tägliche Balken 20 - 30 Trades pro Jahr Mindestens 65 gewinnende Trades Durchschnittliche Balken in Trades zwischen 1 und 4 By Mittlere Reversion, Im Bezug auf Strategien, die versuchen, unter dem aktuellen Durchschnittspreis kaufen und verkaufen zu einem höheren Preis, wie der Preis wieder auf den Mittelwert. Die Idee ist, niedrig zu kaufen und hoch zu verkaufen, im Gegensatz zu Trendfolgesystemen, die typischerweise versuchen, hoch zu kaufen und höher zu verkaufen. Gebäude mit Monte Carlo-Analyse In meinem letzten Newsletter-Artikel, diskutierte ich die Verwendung von Stresstests bei der Bewertung von Handelsstrategien und ihre Beziehung zu Robustheit und Strategie über-Anpassung. Ich erwähnte auch, dass es, wenn es in den Build-Prozess integriert würde, dazu neigen, zu Strategien zu führen, die Robustheit aufweisen. Das ist der Ansatz, der hier verfolgt werden. Kurz gesagt, Stresstests beziehen sich auf die Bewertung, wie empfindlich eine Handelsstrategie auf ihre Inputs und Umwelt ist. Eine robuste Strategie, die nicht überkompatibel zum Markt ist, ist relativ unempfindlich gegenüber Änderungen ihrer Eingangsparameterwerte und anderer Veränderungen in ihrer Umgebung, wie etwa Änderungen der Preisdaten. Monte Carlo Analyse ist die Technik zur Bewertung der Wirkung dieser Veränderungen. Die Strategien Inputs, Preis-Daten, und andere Faktoren werden zufällig verändert, und die Strategie-Performance wird ausgewertet. Durch mehrmaliges Wiederholen dieses Vorgangs erhält man eine Verteilung der Ergebnisse. Die Ergebnisse der ursprünglichen Daten repräsentieren einen Punkt der Verteilung. Andere Punkte auf der Verteilung stellen die Ergebnisse dar, aus denen leicht veränderte Versionen der ursprünglichen Daten verwendet werden, die zu Ergebnissen führen können, die mehr oder weniger günstig sind als die ursprünglichen Daten. Die so genannten Monte Carlo-Ergebnisse sind die Werte der Leistungsmaße (Nettogewinn, Prozentgewinne, Gewinnfaktor usw.), die nicht schlechter sind als eine Mehrheit (typischerweise 95) der Bewertungen. Wenn beispielsweise der Nettogewinn von Monte Carlo bei 95 Vertrauen 15.000 beträgt, bedeutet dies, dass 95 der Bewertungen einen Nettogewinn von mindestens 15.000 haben. Mit anderen Worten, theres eine Chance, dass der Nettogewinn mindestens 15.000, oder umgekehrt Theres eine 5 Chance der Nettogewinn wird weniger als 15.000 sein. Wenn eine Handelsstrategie iterativ über aufeinanderfolgende Generationen von Modifikationen und Tests entwickelt wird, wird der Aufbau auf der Grundlage der Monte Carlo-Ergebnisse dazu tendieren, die Strategie zu einem robusten zu treiben, da nur eine robuste Strategie gute Monte-Carlo-Ergebnisse haben wird. Adaptrade Builder automatisiert diesen Prozess, einschließlich der Auswertung der Strategieergebnisse unter Verwendung der Monte Carlo Ergebnisse von Stresstests. Das erste Beispiel ist für den SPDR SampP 500 Index ETF (Symbol SPY). Es wurden Tagesbalken vom 1/4/1999 bis zum 23.03.2013 verwendet. Der Zeitraum für den Bau wurde auf 1/4/1999 bis 1/2/2011 festgelegt, wobei die ersten 80 (1/4/1999 - 8/10/2008) für den Bau (dh in-Probe) und die verbleibenden Daten verwendet wurden (8/11/2008 - 1/2/2011), die für Out-of-Sample-Tests verwendet wurden. Die verbleibenden Daten (1/3/2011 - 23.3.2013) wurden für die Validierung aufgehoben. Alle Daten wurden von TradeStation 9 bezogen. Die Strategie-Logik war lang-nur, und 100 des Eigenkapitals wurde auf jedem Handel investiert, wobei alle Gewinne reinvestiert wurden und 0,015 pro Aktie pro Umlauf für die Handelskosten abgezogen. Adaptrade Builder verwendet einen genetischen Programmieralgorithmus, um eine Population von Strategien über aufeinanderfolgende Generationen zu entwickeln. Der Schlüssel zur Verwendung von Builder, um Strategien zu finden, die unsere optimalen Anforderungen erfüllen, ist die Festlegung der sogenannten Build-Metriken, die in Abb. 1. Figure 1. Die Build-Metriken im Builder definieren den Sweet Spot für die SPY-Strategie. Die Liste der Build-Ziele enthält drei Allzweck-Metriken, die alle maximiert werden. Diese helfen, die Bevölkerung der Strategien auf diejenigen, die einen hohen Nettogewinn, Korrelationskoeffizienten und statistische Signifikanz, die für jede Strategie wünschenswert sind. Die spezifischen Qualitäten, die gesucht wurden (d. H. Der Sweet Spot), werden durch die Build-Bedingungen definiert, die die Ungleichungsbedingungen für die Anzahl von Trades, die durchschnittlichen Bars in Trades und den Prozentsatz der Gewinne einschließen. Beachten Sie, dass die Bedingung für die Anzahl der Abschlüsse auf einen Bereich festgelegt wird, der auf der Anzahl der Jahre der In-Probe-Daten basiert und das Ziel, zwischen 20 und 30 Trades pro Jahr zu haben. Beachten Sie auch, dass der Prozentsatz der Gewinne Trades auf einen Bereich zwischen 65 und 85 festgelegt ist. Die obere Grenze wurde hinzugefügt, weil Strategien mit einem ungewöhnlich hohen Prozentsatz der Gewinne Trades in der Regel nicht erfüllen einige andere Bedingung. Eine Bestrafung solcher Strategien wird dazu beitragen, die Bevölkerung zu Strategien zu bewegen, die alle Bedingungen erfüllen, im Gegensatz zu Strategien, die unverhältnismäßig eine Bedingung zum Ausschluss von anderen erfüllen. Die gleiche Logik wurde für die Einstellung eines Bereichs für den Profitfaktor verwendet. Die anderen Bedingungen - Korrelationskoeffizient, statistische Signifikanz, Gewinnfaktor und Kelly-Anteil - sind nicht Teil unserer spezifischen Anforderungen, sondern wurden hinzugefügt, um die Gesamtergebnisse zu verbessern. Die Stresstests und Monte-Carlo-Einstellungen, die für dieses Beispiel verwendet wurden, wurden auf dem Bildschirm Build-Optionen ausgewählt, wie unten in Fig. 2. Abbildung 2. Die Optionen für Monte-Carlo-Analyse und Stresstests werden auf der Registerkarte "Erstellungsoptionen" ausgewählt. Wie in der Abbildung gezeigt, wurden für jede Analyse 99 Monte-Carlo-Iterationen verwendet. Das bedeutet, dass zusätzlich zur Auswertung der Originaldaten 99 Stresstests durchgeführt wurden. Die 100 Datensätze wurden unter Verwendung der Monte-Carlo-Analyse analysiert, um die Ergebnisse bei 95 Vertrauen zu extrahieren, wobei zur Bewertung der in Fig. 1. Die Stress-Tests bestand aus Randomisierung der Preise, Randomisierung der Strategie-Eingänge und Randomisierung der Start-Bar. Alle drei Randomisierungen wurden für jeden Stresstest durchgeführt. Da jede Strategie 100-mal (99 Stress-Tests plus die ursprünglichen Daten) bei jeder Generation ausgewertet wurde, dauerte dieser Ansatz etwa 100-mal so lange, wie es hätte Belastungstests und Monte-Carlo-Analyse nicht verwendet worden wäre. Aus diesem Grund wurde eine relativ kleine Population von nur 100 Mitgliedern verwendet, um die Lösungszeit angemessen zu halten. Die Bevölkerung entwickelte sich über 10 Generationen, und eine Option wurde eingestellt, um über 10 Generationen beginnen, wenn der Reingewinn in der Out-of-Sample-Periode war negativ. Die Eigenkapitalkurve von der Top-Strategie in der Bevölkerung nach 20 Generationen (1 Wiederaufbau) ist unten in Abb. 3. Figure 3. Eigenkapitalkurven für jeden Stresstest für die finale SPY-Strategie. Jede Kurve in Fig. 3 repräsentiert einen Stresstest. Wie ersichtlich, haben alle verschiedenen Eigenkapitalkurven die gleiche Form mit positiven Out-of-Sample-Ergebnissen. Im folgenden sind einige der Monte Carlo-Ergebnisse bei 95 Vertrauen entsprechend Fig. 3. Nettogewinn-durchschnittliche Bars in Trades Abgesehen von der Anzahl der Trades, die weniger als gefragt ist, entspricht die Strategie den ursprünglichen Anforderungen. Die Strategie gibt auch den Validierungstest weiter. Wenn das Enddatum auf den 23.2.2013 verlängert wird, steigt der Nettogewinn von Monte Carlo auf 67.015. Die Strategielogik erfüllt auch die Forderung nach einer mittleren Reversionsstrategie: sie tritt bei einer Limit Order ein und beendet sie mit einer Indikatorbedingung. Die Grenze Eintrag bedeutet, dass der Markt auf den Grenzpreis kommen muss, so ist die Strategie zu kaufen niedrig und verkaufen, nachdem der Markt zurück geht. Es ist wichtig zu beachten, dass dies Monte Carlo Ergebnisse bei 95 Vertrauen sind, was bedeutet, dass zum Beispiel 95 der Belastungstest Auswertungen hatten einen Nettogewinn mindestens so groß wie 56.784. Wenn der Belastungstest abgeschaltet wird und die Strategie auf den ursprünglichen Daten ausgewertet wird, ist die Eigenkapitalkurve wie nachstehend in Figur 1 gezeigt. 4. Abbildung 4. Eigenkapitalkurve für die endgültige SPY-Strategie auf den ursprünglichen Daten. Diese Eigenkapitalkurve entspricht einem Reingewinn von 109.497, was einer Jahresrendite von 5,5 entspricht. Während dies nur eine bescheidene Rendite ist, schlägt es leicht die Buy-and-Hold-Rendite von rund 1,8 im gleichen Zeitraum und wird ohne Hebelwirkung und mit einer stetig wachsenden Eigenkapitalkurve über einen Zeitraum erreicht, der zwei Bärenmärkte umfasst. A Select Sector SPDR Beispiel Das zweite Beispiel beinhaltet das Erstellen einer Strategie über ein Portfolio von ETFs, die aus den Select Sector SPDRs bestehen. Diese ETFs teilen den SampP 500 Index in neun Sektoren auf, so dass jeder Bestand im SampP 500 in einen der neun Sektoren ohne Überlappung platziert wird. Die neun Sektoren sind Consumer Discretionary (Symbol XLY), Consumer Staples (XLP), Energy (XLE), Financial (XLF), Health Care (XLV), Industrial (XLI), Materialien (XLB), Technologie (XLK) und Utilities (XLU). Die meisten der gleichen Einstellungen wurden verwendet, um diese Strategie wie im letzten Beispiel zu erstellen. Da jedoch neun Mal so viele Preisdaten im Build verwendet wurden, reduzierte ich die Anzahl der Monte-Carlo-Iterationen von 99 auf 5. Die anderen Build-Optionen waren die gleichen wie in Abb. 2 mit Ausnahme der Wiederherstellungsoption, die nicht ins Spiel kam. Für die Positionsbestimmung wurden 20 von Eigenkapital in jedem Handel investiert. Da nicht alle Märkte zur gleichen Zeit handelbar waren, wurde diese Einstellung gewählt, um ausreichende Positionsgrößen bereitzustellen, ohne eine Hebelwirkung (d. h. Überinvestition) zur Folge zu haben. Die Stichprobenperiode für diesen Bau betrug 1/4/1999 bis 5/28/2009 mit 5/29/2009 bis 1/2/2012 als Out-of-Sample Periode und 1/3/2012 zu 4/23 / 2013 für die Validierung. Die Eigenkapitalkurve von einer der obersten Strategien in der Bevölkerung nach 10 Generationen (keine Wiederaufbau) ist unten in gezeigt. 5. Abbildung 5. Eigenkapitalkurven für jeden Stresstest für die endgültige Selektion SPDR Portfolio-Strategie. Jede Eigenkapitalkurve in Abb. 5 stellt das Portfolio-Eigenkapital dar, das aus Backtests auf allen neun Märkten gleichzeitig für einen Satz von Stresstest-Einstellungen (oder die ursprünglichen Daten) erzeugt wird. Einige Übersicht Monte Carlo Ergebnisse werden unten angezeigt. Total Net Profit Im Gegensatz zum vorherigen Beispiel sind die Ergebnisse nicht wesentlich unterschiedlich, wenn die Monte Carlo-Analyse ausgeschaltet wird und die Ergebnisse über die ursprünglichen Daten ausgewertet werden. In diesem Fall erhöht sich der Reingewinn auf 205.140. Diese Strategie leitet auch den Validierungstest weiter. Die Eigenkapitalkurve für die Strategie über die ursprünglichen Daten (ohne Belastungstest), in der die Validierungsperiode eingeschlossen ist, ist nachfolgend in 6 gezeigt. 6. Abbildung 6. Eigenkapitalkurve für die endgültige Selektion SPDR Portfolio-Strategie auf die ursprünglichen Daten. Diese Eigenkapitalkurve entspricht einem Nettogewinn von 249.431, was einer jährlichen Rendite von 9,5 mit einem Worst-Case-Drawdown von 21 entspricht. Wie im vorherigen Beispiel tritt die Strategielogik lange auf einen Limitauftrag ein. Die meisten Exits sind über ein Ziel-Exit, mit anderen Geschäften verlassen auf der Grundlage einer Indikator-Bedingung oder auf einem Schutz-Stop. Download Mean Reversion-Projektdateien: (Rechtsklick, Ziel speichern unter als. zip-Datei benötigt Adaptrade Builder zum Öffnen.) Lizenzierungsgründe enthalten Projektdateien keine Preisdaten. Die so genannte Sweet Spot für Handelsstrategien von Dr. Bandy empfohlen scheint effektive Bedingungen für den Aufbau von Mittelwerten Handelsstrategien in einer automatisierten Weise mit einem Tool wie Adaptrade Builder bieten. Es konnten Strategien gefunden werden, die die meisten Anforderungen für beide Beispiele erfüllen: eine einheitliche Marktstrategie für den SPY-ETF-Markt und eine Strategie für ein Portfolio von ETFs, bestehend aus den neun Select Sector SPDRs. Beide Strategien schlugen Buy-and-Hold und hielt sich gut in der Validierung Test. Für beide Beispiele wurden Stress-Tests mit Monte-Carlo-Analyse eingesetzt, um die Chancen der Suche nach robusten Strategien zu erhöhen. Im Vergleich zum Portfolio-Beispiel waren die Stresstestergebnisse für die Single-Market-Strategie (SPY) wesentlich konservativer (weniger günstig) als die Ergebnisse der ursprünglichen Daten. Während einige davon aufgrund der strengeren Belastungstests im Vergleich zum Portfolio-Beispiel liegen, schlägt sie vor, dass die SPY-Strategie weniger robust als das Portfolio-Beispiel ist. In der Regel, wo die Monte Carlo Ergebnisse deutlich von den Ergebnissen auf die ursprünglichen Daten divergieren, könnte erwartet werden, dass die beste Schätzung der zukünftigen Ergebnisse wäre irgendwo dazwischen, obwohl das hängt davon ab, wie konservativ die Belastungstests und Monte Carlo-Analyse ist . Es erscheint vernünftig, dass die Portfoliostrategie robuster als die Binnenmarktstrategie wäre, da die Portfoliostrategie auf neun verschiedenen Märkten aufgebaut wurde und über ein breiteres Spektrum an Preisdaten hinweg gut funktionieren musste. Es wurde über neunmal so viele Daten gebaut und hat etwa neunmal so viele Trades. Die höhere Performance der Portfolio-Strategie kann die positive Auswirkung der Diversifizierung auf die neun verschiedenen Sektoren der SPDR widerspiegeln. Obwohl keine Strategie die Anforderung an die Anzahl der Trades erfüllt, kann es möglich sein, Strategien zu finden, die alle Anforderungen erfüllen, wenn eine größere Population verwendet wird oder strengere Wiederaufbauanforderungen eingesetzt werden, was mehr Buildzeit erfordern würde. Alternativ kann es sein, dass eine derartige Strategie aufgrund der widersprüchlichen Erfordernisse hoher Genauigkeit, Handelshäufigkeit, kurzer Handelsdauer und so weiter unwahrscheinlich ist. Die besten Baustellenbedingungen sind die, die das Marktpotential voll ausschöpfen und gleichzeitig realistisch bleiben. Die Kombination einer Reihe von nützlichen baulichen Bedingungen, wie die von Dr. Bandy, mit integrierten Robustheits-Features, wie Stress-Tests und Monte Carlo-Analyse, in einem automatisierten Tool wie Builder sollte eine solide Rahmenbedingungen für die Entwicklung wirksamer Handelsstrategien. Bandy, Howard B. Mittelwert Reversion Trading Systems. Blue Owl Press, Inc. Sioux Falls, SD, 2013, p. 138. Bandy, Howard B. Modellierung des Handelssystems. Blue Owl Press, Inc. Sioux Falls, SD, 2011, p. 154. Dieser Artikel erschien in der April 2013 Ausgabe des Adaptrade Software-Newsletters. Die SampP 500 und Select Sector SPDRs sind Warenzeichen der McGraw-Hill Companies, Inc. HYPOTHETISCHE ODER SIMULATIVE LEISTUNGSERGEBNISSE HABEN BESTIMMTE INHERENTE BESCHRÄNKUNGEN. EINE AKTUELLE LEISTUNGSAUFNAHME, SIMULATIVE ERGEBNISSE NICHT VERTRETEN. WENN DIE HÄNDE NICHT TATSÄCHLICH AUSGEFÜHRT WERDEN KÖNNEN, KÖNNEN DIE ERGEBNISSE AUSSERDEM AUF DIE AUSWIRKUNGEN AUF BESTIMMTE MARKTFAKTOREN ENTSTANDEN WERDEN KÖNNEN. SIMULATED HANDELSPROGRAMME IM ALLGEMEINEN SIND AUCH AUF DIE TATSACHE, DIE SIE MIT DEM VORTEIL VON HINDSIGHT ENTWERFEN. KEINE REPRÄSENTATION IST GEMACHT, DASS JEDE KONTO ODER GELTEND ZU ERWERBENDE GEWINNE ODER VERLUSTE VERÄNDERT WIRD. Wenn Sie über Neuentwicklungen, Neuigkeiten und Angebote von Adaptrade Software informiert werden möchten, können Sie sich gerne an unsere E-Mail-Liste wenden. Vielen Dank. Das versteckte Potenzial des Lernens Wie zu handeln SPX 038 Gold Optionen August 5th, 2010 at 8:46 pm J. W. Jones Market Techniker glauben, dass sie in einer Welt, die nur wenige Menschen wirklich verstehen. Es ist, als ob sie glauben, dass sie in irgendeiner Art von geheimnisvollem Finanzkonstrukt arbeiten, das nur wenige glückliche Seelen weg von der Wall Street zugreifen können. Die Wahrheit ist, dass die technische Analyse nur als eine Metrik verwendet werden sollte, um einem Händler zu helfen, die Finanzmärkte zu navigieren. Es gibt eine Vielzahl von Forschungsmethoden, die alle Licht und bieten Hinweise, wo der Markt kann Überschrift. Markt-Interna, die Volatilität Index, Fed sprechen, und sogar grundlegende Analyse kann hilfreich sein, für Händler. Es wäre nicht sinnvoll, Marktinformationen zu ignorieren, die einen besseren Einblick und zusätzliche Hinweise liefern, die helfen können, einem Händler eine Kante zu geben. Schließlich ist die Kante, was alle Händler suchen. Die Sweet Spot im Handel ist mit einem Handelssystem, das Ihnen einen Vorteil und bietet eine Vielzahl von Möglichkeiten zu quantifizieren, zu mildern und zu definieren Risiko. Dieselben Trader, die nur auf eine rein technische Analyse im Handel zurückgreifen, sehen auch keine anderen Anlageinstrumente, die vorteilhafte Renditen bieten könnten. Die am besten gehütete Geheimnisse sind immer offen gehalten, direkt unter der Öffentlichkeit sprichwörtlich. Die Menschen werden die Welt auf der Suche nach Geheimnissen reisen oder Theorien beweisen, aber in vielen Fällen liegt der Heilige Gral direkt unter ihren Nasen. Die größten geheimen Finanzmärkte bieten die unglaublichen potenziellen Renditen, die Optionen anbieten können. Optionen bieten eine Vielzahl von Möglichkeiten, um in einer Vielzahl von Marktbedingungen profitieren. Optionen bieten einzigartige Profitmotoren, die nicht verfügbar oder sogar möglich sind, wenn Aktien oder Anleihen gehandelt werden. Die meisten Händler übersehen Optionen oder sind einfach nicht bereit, in der Zeit oder Mühe, um zu lernen, wie man sie angemessen handeln. Dabei gehen sie von riesigen Möglichkeiten weg. Die meisten Anfänger Händler sind schnell zu Optionen, wie sie konsequent verlieren Geld verlieren, wenn sie handeln. Der häufigste Grund Anfänger Option Trader Erfahrung Verluste ist, dass sie nicht ihre Hausaufgaben im Voraus tun. Neue Option Trader nicht erkennen, die Bedeutung der Griechen. Optionshändler müssen nicht nur den Volatilitätsindex kennen, sondern müssen auch die dynamischen Faktoren beherrschen, die die Optionspreise wie die implizite Volatilität beeinflussen. In Zukunft werden meine Artikel mit der Absicht konzentriert, Leser über die Griechen in einer Weise zu erziehen, die leicht zu lesen und zu verstehen ist. Trader, die ein Handelssystem nutzen oder nach risikoarmen Anteilen suchen, finden sich im Leerlauf, wenn die Marktbedingungen für ihr Handelssystem nicht günstig sind oder wenn sich die vorsichtigen Einreichungen nicht präsentiert haben. Die Fähigkeit zum Handel Optionen gibt einem Händler ein anderes Investment-Fahrzeug, das potenzielle Gewinne bieten kann. In den meisten Fällen können Optionen attraktive Renditen bieten, während sie ein deutlich geringeres Risiko als Aktien, ETFs oder Anleihen einnehmen. Um eine Situation zu veranschaulichen, in der Optionen ein besseres Risiko als Belohnung darstellen können, müssen wir am 2. August nicht weiter als das Intraday-Markt-Handeln im SampP 500 suchen. Der Markt sammelte sich aus dem vorherigen Abschluss und stieß gegen erheblichen Widerstand. Händler könnten auf der Suche nach langen oder kurzen auf der Grundlage der jüngsten Preis-Aktion zu bekommen. Der Markt war konsolidiert worden, und ein signifikanter Schritt würde wahrscheinlich kommen. Offensichtlich war der Markt an einer Kreuzung und ein Ausbruch könnte gleich um die Ecke sein, oder der Markt könnte testen jüngsten Hochs nur auf die jüngsten Unterstützung zurückkehren. Aktienhändler müssen eine Entscheidung über die Richtung zu treffen oder an der Seitenlinie sitzen und lassen andere das schwere Heben. Option Trader könnten auf Positionen setzen, die eine Richtungsvorspannung haben, oder sie könnten den Zeitzerfall (Theta) als Profitmotor nutzen. Durch die Verwendung von Spreads wie ein eiserner Kondor oder ein Schmetterling verbreitet, Option Trader können tatsächlich auf eine Position, die die Fähigkeit, profitabel zu haben, unabhängig davon, welche Richtung SPY geht. Damit eine Ausbreitung funktionieren kann, muss der SPY-Preis innerhalb der Grenzen des Spread bleiben, der auch durch die vom Optionshändler ausgewählten spezifischen Optionspreizungspreise bestimmt wird. Ähnlich wie der Mechanismus, der die Vermögenspreise prüft, desto größer ist das Risiko, dass ein Optionshändler die Rendite erhöht. Wenn ein Spread geschrieben wird, der extrem breit und damit weniger riskant ist, verringern sich die potenziellen Renditen. Letztlich ist dies ein neues Beispiel dafür, wie Optionen bieten können mehr als nur Hebelwirkung, aber eine völlig andere Methodik, die übergroße Gewinne produzieren können. In Zukunft werden wir die verschiedenen Spreads und die Profitmotoren, die sie treiben, sezieren. Bevor wir jedoch mit einer detaillierten Diskussion verschiedener Optionsstrategien beginnen, müssen Optionshändler ein klares Verständnis verschiedener Volatilitätsprinzipien und der Auswirkungen haben, die die Griechen in der Welt der Optionen haben. Schließlich werde ich Sie mit der Muse von George Orwell verlassen, Um zu sehen, was vor einer Nase ist, bedarf es eines ständigen Kampfes. Wenn Sie weiterhin über die versteckten potenziellen Optionen Handel lernen möchten, wenden Sie sich bitte an meine kostenlosen Newsletter: OptionsTradingSignals J. W. Jones ist ein unabhängiger Option Trader mit mehreren Formen der Analyse, um seine Option Trading-Strategien zu führen. Jones verfügt über einen umfassenden Hintergrund in der Portfolioanalyse und - analyse sowie der Risikoanalyse. J. W. Bemüht sich, Händler, die Möglichkeiten Chancenhandel Optionen fehlen und verpflichten sich, Inhalte zu schreiben, die nicht nur pädagogisch, sondern auch unterhaltsam ist zu erreichen. Regelmäßige Leser werden das Wissen und die Fähigkeiten entwickeln, um Optionen kompetent im Laufe der Zeit zu handeln. Jones konzentriert sich auf das Schreiben von Spreads in Situationen, in denen das Risiko klar definiert ist und hohe Potenzialerträge realisiert werden können. Dieser Eintrag wurde am Donnerstag, 5. August 2010 um 8:46 Uhr und ist abgelegt unter Daily Market Trades. Optionen Handel. Ausbildung. Sie können alle Antworten auf diesen Eintrag durch den RSS 2.0 Feed verfolgen. Beide Kommentare und Pings sind derzeit geschlossen. Kommentarfunktion ist geschlossen.
No comments:
Post a Comment